• 1.

    Queller, D. C. Cooperators since life began. Q. Rev. Biol. 72, 184–188 (1997).

  • 2.

    Nowak, M. A., Tarnita, C. E. & Wilson, E. O. The evolution of eusociality. Nature 466, 1057–1062 (2010).

  • 3.

    Berdahl, A., Torney, C. J., Ioannou, C. C., Faria, J. J. & Couzin, I. D. Emergent sensing of complex environments by mobile animal groups. Science 339, 574–576 (2013).

  • 4.

    Morand-Ferron, J. & Quinn, J. L. Larger groups of passerines are more efficient problem solvers in the wild. Proc. Natl Acad. Sci. USA 108, 15898–15903 (2011).

  • 5.

    Waters, J. S., Holbrook, C. T., Fewell, J. H. & Harrison, J. F. Allometric scaling of metabolism, growth, and activity in whole colonies of the seed-harvester ant Pogonomyrmex californicus. Am. Nat. 176, 501–510 (2010).

  • 6.

    Dornhaus, A., Powell, S. & Bengston, S. Group size and its effects on collective organization. Annu. Rev. Entomol. 57, 123–141 (2012).

  • 7.

    Brahma, A., Mandal, S. & Gadagkar, R. Emergence of cooperation and division of labor in the primitively eusocial wasp Ropalidia marginata. Proc. Natl Acad. Sci. USA 115, 756–761 (2018).

  • 8.

    Fewell, J. H. & Harrison, J. F. Scaling of work and energy use in social insect colonies. Behav. Ecol. Sociobiol. 70, 1047–1061 (2016).

  • 9.

    Jeanson, R., Fewell, J. H., Gorelick, R. & Bertram, S. M. Emergence of increased division of labor as a function of group size. Behav. Ecol. Sociobiol. 62, 289–298 (2007).

  • 10.

    Gautrais, J., Theraulaz, G., Deneubourg, J. L. & Anderson, C. Emergent polyethism as a consequence of increased colony size in insect societies. J. Theor. Biol. 215, 363–373 (2002).

  • 11.

    Oldroyd, B. P. & Fewell, J. H. Genetic diversity promotes homeostasis in insect colonies. Trends Ecol. Evol. 22, 408–413 (2007).

  • 12.

    Jeanson, R. & Weidenmüller, A. Interindividual variability in social insects – proximate causes and ultimate consequences. Biol. Rev. Camb. Philos. Soc. 89, 671–687 (2014).

  • 13.

    Ravary, F. & Jaisson, P. Absence of individual sterility in thelytokous colonies of the ant Cerapachys biroi Forel (Formicidae, Cerapachyinae). Insectes Soc. 51, 67–73 (2004).

  • 14.

    Ravary, F., Jahyny, B. & Jaisson, P. Brood stimulation controls the phasic reproductive cycle of the parthenogenetic ant Cerapachys biroi. Insectes Soc. 53, 20–26 (2006).

  • 15.

    Oxley, P. R. et al. The genome of the clonal raider ant Cerapachys biroi. Curr. Biol. 24, 451–458 (2014).

  • 16.

    Sendova-Franks, A. B. & Franks, N. R. Spatial relationships within nests of the ant Leptothorax unifasciatus (Latr) and their implications for the division of labor. Anim. Behav. 50, 121–136 (1995).

  • 17.

    Gordon, D. M. Dynamics of task switching in harvester ants. Anim. Behav. 38, 194–204 (1989).

  • 18.

    Mersch, D. P., Crespi, A. & Keller, L. Tracking individuals shows spatial fidelity is a key regulator of ant social organization. Science 340, 1090–1093 (2013).

  • 19.

    Heyman, Y., Shental, N., Brandis, A., Hefetz, A. & Feinerman, O. Ants regulate colony spatial organization using multiple chemical road-signs. Nat. Commun. 8, 15414 (2017).

  • 20.

    Crall, J. D. et al. Spatial fidelity of workers predicts collective response to disturbance in a social insect. Nat. Commun. 9, 1201 (2018).

  • 21.

    Weidenmüller, A. The control of nest climate in bumblebee (Bombus terrestris) colonies: interindividual variability and self reinforcement in fanning response. Behav. Ecol. 15, 120–128 (2004).

  • 22.

    Campos, D., Bartumeus, F., Méndez, V., Andrade, J. S. Jr & Espadaler, X. Variability in individual activity bursts improves ant foraging success. J. R. Soc. Interface 13, 20160856 (2016).

  • 23.

    Bonabeau, E., Theraulaz, G. & Deneubourg, J.-L. Quantitative study of the fixed threshold model for the regulation of division of labour in insect societies. Proc. R. Soc. Lond. B 263, 1565–1569 (1996).

  • 24.

    Pacala, S. W., Gordon, D. M. & Godfray, H. C. J. Effects of social group size on information transfer and task allocation. Evol. Ecol. 10, 127–165 (1996).

  • 25.

    Franks, N. R. & Tofts, C. Foraging for work: how tasks allocate workers. Anim. Behav. 48, 470–472 (1994).

  • 26.

    Gorelick, R., Bertram, S. M., Killeen, P. R. & Fewell, J. H. Normalized mutual entropy in biology: quantifying division of labor. Am. Nat. 164, 677–682 (2004).

  • 27.

    Teseo, S., Châline, N., Jaisson, P. & Kronauer, D. J. C. Epistasis between adults and larvae underlies caste fate and fitness in a clonal ant. Nat. Commun. 5, 3363 (2014).

  • 28.

    Crall, J. D. et al. Social context modulates idiosyncrasy of behaviour in the gregarious cockroach Blaberus discoidalis. Anim. Behav. 111, 297–305 (2016).

  • 29.

    Freund, J. et al. Emergence of individuality in genetically identical mice. Science 340, 756–759 (2013).

  • 30.

    Holbrook, C. T., Kukuk, P. F. & Fewell, J. H. Increased group size promotes task specialization in a normally solitary halictine bee. Behaviour 150, 1449–1466 (2013).

  • 31.

    Ravary, F. & Jaisson, P. The reproductive cycle of thelytokous colonies of Cerapachys biroi Forel (Formicidae, Cerapachyinae). Insectes Soc. 49, 114–119 (2002).

  • 32.

    R Core Team. R: A Language and Environment for Statistical Computing http://www.R-project.org/ (R Foundation for Statistical Computing, Vienna, 2008).

  • 33.

    Dodds, P. S. & Watts, D. J. Universal behavior in a generalized model of contagion. Phys. Rev. Lett. 92, 218701 (2004).

  • 34.

    Bonabeau, E., Theraulaz, G. & Deneubourg, J.-L. Fixed response thresholds and the regulation of division of labor in insect societies. Bull. Math. Biol. 60, 753–807 (1998).

  • Source

    - Advertisement -
    Boatsetter
    Previous articleXiaomi’s new Pocophone F1 undercuts rivals with a low price and high-end processor
    Next articleJourneys: Andrew Landry – Golf Digest